Generalized Γ-Cancellativity of Γ-AG-Groupoids

Thiti Gaketem
School of Science, University of Phayao, Phayao, 56000
E-mail address: newtonisaac41@yahoo.com

Abstract-In this paper we study some properties of a Γ-cancellativity on a Γ-AG-groupoid. Finally we study quasi- Γ-cancellativity which is a generalization of Γ-cancellativity.

Keywords Γ-AG-groupoid, Γ-cancellativity, quasi-Γ-cancellativity

1. Introduction

Definition 1.1 [1. P.41]. A groupoid (S, \cdot) is called an AG-groupoid, if it satisfies left invertive law

$(ab)c = (cb)a$ for all $a, b, c \in S$.

Lemma 1.2 [1. P.41]. An AG-groupoid S, is called a medial law if it satisfies

$(ab)(cd) = (ac)(bd)$ for all $a, b, c, d \in S$.

Definition 1.3 [8. P.110]. An AG-groupoid S, is called a paramedical if it satisfies

$(ab)(cd) = (db)(ca)$ for all $a, b, c, d \in S$.

Proposition 1.4 [2. P.110]. If S is an AG-groupoid with left identity, then

$a(bc) = b(ac)$ for all $a, b, c, d \in S$.

Definition 1.5. [8, p.268] Let S and Γ be any non-empty sets. We call S to be Γ-AG-groupoid if there exists a mapping $S \times \Gamma \times S \rightarrow S$, written (a, α, b) by $a\alpha b$, such that S satisfies the identity $(a\alpha b)\beta c = (a\alpha b)\beta a$ for all $a, b, c, \alpha, \beta \in \Gamma$.

Definition 1.6. [4, p.2]. Let S and Γ be any non-empty sets. If there exists a mapping $S \times \Gamma \times S \rightarrow S$, written (a, α, b) by $a\alpha b$, S is called a Γ-medial if it satisfies $(a\alpha b)\beta(c\gamma d) = (a\alpha c)\beta(b\gamma d)$ and called a Γ-paramedial if it satisfies $(a\alpha b)\beta(c\gamma d) = (d\alpha b)\beta(c\gamma d)$ for all $a, b, c, d \in S$ and $\alpha, \beta, \gamma \in \Gamma$.

Shan M. was introduced the concepts of cancellativity and quasi-cancellativity of an AG-groupoids as follows.

Definition 1.7. [7. P2188]. An element a of a AG-groupoid S is called left cancellative if $ax = ay$ implies that $x = y$ for all $x, y \in S$. Similarly an element a of a AG-groupoid S is called right cancellative if $xa = ya$ implies that $x = y$ for all $x, y \in S$. An element a of an AG-groupoid S is called cancellative if it is both left and right cancellative.

Definition 1.8 [6. P2066]. An AG-groupoid S is a quasi-cancellative if for any $x, y \in S$,

1. $x = xy$ and $y^2 = yx$ implies that $x = y$,
2. $x = yx$ and $y^2 = xy$ implies that $x = y$.

25
2. \(\Gamma \)-Cancellativity of \(\Gamma \)-AG-groupoids

In this paper, we introduce the concept of a \(\Gamma \)-cancellativity of \(\Gamma \)-AG-groupoids which is defined analogous to [6] and investigate its properties.

Definition 2.1. An element \(a \) of a \(\Gamma \)-AG-groupoid \(S \) is called left \(\Gamma \)-cancellative if \(aax = aay \) implies that \(x = y \) for all \(x, y \in S \) and \(a \in \Gamma \). Similarly an element \(a \) of a \(\Gamma \)-AG-groupoid \(S \) is called right \(\Gamma \)-cancellative if \(xaa = yaa \) implies that \(x = y \) for all \(x, y \in S \) and \(a \in \Gamma \). An element \(a \) of a \(\Gamma \)-AG-groupoid \(S \) is called \(\Gamma \)-cancellative if it is both left and right \(\Gamma \)-cancellative.

Theorem 2.2. The following statements are equivalent for a \(\Gamma \)-AG-groupoid \(S \):
1. \(S \) is left \(\Gamma \)-cancellative;
2. \(S \) is right \(\Gamma \)-cancellative;
3. \(S \) is \(\Gamma \)-cancellative.

Proof. (1) \(\Rightarrow \) (2) Let \(S \) be left \(\Gamma \)-cancellative. Let \(a \) be an arbitrary element of \(S \) and let \(xaa = yaa \). Let \(k \in S \) and \(\beta \in \Gamma \) for all \(x, y \in S \) and \(a \in \Gamma \). Then
\[
(kaa)b\beta x = (xa\alpha)\beta y \\
= (\alpha\alpha)b\beta y
\]
by Definition 1.1.

By left \(\Gamma \)-cancellativity, \(x = y \). Thus \(S \) is right \(\Gamma \)-cancellative.

(2) \(\Rightarrow \) (3) Let \(S \) be right \(\Gamma \)-cancellative. Let \(a \) be an arbitrary element of \(S \) and let \(aaax = aay \).

Let \(k \in S \) and \(\beta \in \Gamma \) for all \(x, y \in S \) and \(a \in \Gamma \). Then
\[
[(xbk)\alpha\alpha]y\gamma a = (a\alpha\alpha)y(xbk) \\
= (a\alpha\alpha)y(a\beta k)
\]
by Definition 1.1.

By right \(\Gamma \)-cancellativity, \(x = y \). Thus \(S \) is left \(\Gamma \)-cancellative. Hence \(S \) is \(\Gamma \)-cancellative.

(3) \(\Rightarrow \) (1) This is clear.

Theorem 2.3. Every right \(\Gamma \)-cancellative element of a \(\Gamma \)-AG-groupoid \(S \) is a left \(\Gamma \)-cancellative.

Proof. Let \(S \) be a \(\Gamma \)-AG-groupoid and let \(a \) be an arbitrary right \(\Gamma \)-cancellative element of \(S \). Suppose that \(a\alpha x = a\alpha y \) for all \(a, x, y \in S \) and \(a \in \Gamma \). For \(\beta, \gamma \in \Gamma \), we have
\[
[(xb\alpha)\alpha\alpha]y\gamma a = (a\alpha\alpha)y(xb\alpha) \\
= (a\alpha\alpha)y(a\beta\alpha)
\]
by Definition 1.1.

Thus the right \(\Gamma \)-cancellativity implies that \(x = y \). Hence \(a \) is left \(\Gamma \)-cancellative. Therefore every right \(\Gamma \)-cancellative element of \(S \) is left \(\Gamma \)-cancellative.

Definition 2.4. [8, p269] An element \(e \in S \) is called a left identity of a \(\Gamma \)-AG-groupoid if \(eya = a \) for all \(a \in S \) and \(\gamma \in \Gamma \).
The following two theorems are analogously to the in [7, p.2190].

Theorem 2.5. Let \(S \) be a \(\Gamma \)-AG-groupoid with a left identity \(e \) which is right \(\Gamma \)-cancellative. If \(aab = cad \), then \(b\gamma a = d\gamma c \) for all \(a, b, c, d \in S \) and \(\alpha, \gamma \in \Gamma \).

Proof. Let \(a, b, c, d \in S \) and \(\alpha, \gamma \in \Gamma \). Then by Definitions 1.1 and 2.4, we have the following implication

\[
aab = cad \Rightarrow (e\gamma a)ab = (e\gamma c)ad \Rightarrow (b\gamma a)\alpha e = (d\gamma c)\alpha e.
\]

Since \(S \) is right \(\Gamma \)-cancellative, thus \(b\gamma a = d\gamma c \). We complete the proof. □

Theorem 2.6. Let \(S \) be a \(\Gamma \)-AG-groupoid with a left identity \(e \). Then every left \(\Gamma \)-cancellative element is also right \(\Gamma \)-cancellative.

Proof. Let \(a \) be an arbitrary left \(\Gamma \)-cancellative element of \(S \) and suppose that \(xaa = yaa \) for all \(x, y \in S \) and \(\alpha \in \Gamma \). Then by Theorem 2.5, we have \(aax = aay \). Since \(S \) is left \(\Gamma \)-cancellative, \(x = y \). Thus \(a \) is right \(\Gamma \)-cancellative. Hence every left \(\Gamma \)-cancellative element of \(S \) is right \(\Gamma \)-cancellative. □

A left invertible property of a \(\Gamma \)-AG-groupoid is defined analogously to AG-groupoid as in [5,p387].

Definition 2.7. Let \(S \) be a \(\Gamma \)-AG-groupoid with a left identity \(e \). An element \(a \) of \(S \) is said to be left invertible if there exists an element \(a^{-1} \) of \(S \) such that \(a^{-1}aa = e \) for all \(\alpha \in \Gamma \). In this case \(a^{-1} \) is called a left inverse of \(a \). Dually, an element \(a \) of \(S \) is said to be right invertible if there exists an element \(a^{-1} \) of \(S \) such that \(aa^{-1}a = e \) for all \(\alpha \in \Gamma \), \(a^{-1} \) is called a right inverse of \(a \). If an element \(a \) of \(S \) is both left and right invertible, then \(a \) is called invertible.

Next, we prove that cancellativity and invertibility are coincident in a finite \(\Gamma \)-AG-groupoid \(S \) with a left identity \(e \).

Theorem 2.8. Let \(S \) be a finite \(\Gamma \)-AG-groupoid \(S \) with a left identity \(e \), then for all \(a \in S \), \(a \) is invertible if and only if \(a \) is \(\Gamma \)-cancellative.

Proof. \((\Rightarrow)\) Assume that \(a \) is invertible. Then there exists \(a^{-1} \in S \) such that \(a^{-1}aa = e = a\alpha a^{-1} \). Suppose that \(xaa = yaa \) for all \(x, y \in S \) and \(\gamma \in \Gamma \). Then

\[
x = e\gamma x = (a^{-1}aa)yx = (xaa)\gamma a^{-1} = (yaa)\gamma a^{-1} = (a^{-1}aa)\gamma y = e\gamma y = y
\]

Thus \(a \) is right \(\Gamma \)-cancellative. By Theorem 2.2, \(a \) is \(\Gamma \)-cancellative.

\((\Leftarrow)\) Assume that \(a \) is \(\Gamma \)-cancellative and let \(S = \{s_1, s_2, \ldots, s_n\} \). Then for all \(\alpha \in \Gamma \),

\[
aas_1, aas_2, \ldots, aas_n \]

are all distinct. Since \(S \) is finite, there must exists a positive integer \(i \in \{1, 2, \ldots, n\} \) such that \(aas_i = e \) but then \(s_i\alpha a = e \). By Theorem 2.5, we have \(aas_i = s_i\alpha a = e \) for all \(\alpha \in \Gamma \). Hence \(a \) is invertible. □

3. The Quasi-\(\Gamma \)-Cancellativity of a \(\Gamma \)-AG-groupoid

In section, we study definition of a quasi-\(\Gamma \)-cancellativity which is defined analogously as in [6, P2066] and also investigate its properties.

Definition 3.1. A \(\Gamma \)-AG-groupoid \(S \) is a quasi-\(\Gamma \)-cancellative if for any \(x, y \in S \) and \(\gamma \in \Gamma \),
(1) \(x = x y y \) and \(y = y y x \) implies that \(x = y \),
(2) \(x = y y x \) and \(y = x y y \) implies that \(x = y \).

Definition 3.2. A \(\Gamma \)-AG-groupoid \(S \) is said to be a \(\Gamma \)-idempotent. If \(x y x = x \) for all \(x \in S \) and \(\gamma \in \Gamma \).

Definition 3.3. A \(\Gamma \)-AG-groupoid \(S \) is said to be a \(\Gamma \)-AG-band if every element of \(S \) is a \(\Gamma \)-idempotent.

The following two theorems are analogously as in [6, p.2067-2068].

Theorem 3.4. Every \(\Gamma \)-AG-band is a quasi-\(\Gamma \)-cancellative.

Proof. Let \(S \) be a \(\Gamma \)-AG-band and let \(x, y \in S \) and \(\gamma, \beta \in \Gamma \). We shall show that \(S \) is a quasi-\(\Gamma \)-cancellative consider the following:

1. Assume that \(x = x y y \) and \(y = y y x \). Then \(x = x y y \) and \(y = y y x \). Now
 \[
 x = x y y \\
 = (x y x) \beta y \\
 = (y y x) \beta x \\
 = y \beta x \\
 = x y y \\
 = \gamma y x = x
 \]
 by Definition 3.2
 by Definition 1.1
 by \(\Gamma \)-paramedical
 by \(\gamma \in \Gamma \).

2. Assume that \(x = y y x \) and \(y = x y y \). Then \(x = y y x \) and \(y = x y y \). Now
 \[
 x = y y x \\
 = (y y x) \beta (x y x) \\
 = (x y x) \beta (y y y) \\
 = x y \beta y \\
 = x y y \\
 = \gamma y y = x
 \]
 by Definition 3.2
 by \(\gamma \in \Gamma \).

Theorem 3.5. Let \(S \) be a \(\Gamma \)-AG-groupoid such that \(S \) is quasi-\(\Gamma \)-cancellative and \(x y x = x \) for all \(x \in S \) and \(\gamma \in \Gamma \). If \(S \) is \(\Gamma \)-medial, then the following statements hold:

1. \(x y a = x \gamma b \) if and only if \(a y x = b y x \),
2. \((x y y) \beta a = (x y y) \beta b \) implies that \(a \beta (y y x) = b \beta (y y y) \), for all \(x, y, a, b \in S \) and \(\gamma, \beta \in \Gamma \).

Proof. (1) \((\Rightarrow \) Let \(x y a = x \gamma b \). Then \((x y a) \beta (x y a) = (x y b) \beta (x y a) \) and \((x y a) \beta (x y a) = (x y b) \beta (x y b) \). So
 \[
 a \beta x = (a y a) \beta x \\
 = (x y a) \beta a \\
 = (x y b) \beta a \\
 = (a \gamma b) \beta x \\
 = (a \gamma b) \beta (x y x) \\
 = (a \gamma x) \beta (b y x) \\
 = \gamma (x y y) = x
 \]
 by Definition 3.2
 by Definition 1.1
 by \(\gamma \in \Gamma \).

And
 \[
 b \beta x = (b \gamma b) \beta x \\
 = (x y b) \beta b \\
 = \gamma y y = x
 \]
 by Definition 3.2
 by Definition 1.1
Then \(a\bar{b}x = (a\gamma x)\beta(b\gamma x) \) and \(b\beta x = (b\gamma x)\beta(a\gamma x) \). Thus \(a\gamma x = b\gamma x \).

(\(\Leftarrow\)) This can be proved similarly.

\[\begin{aligned}
(2.) & \quad \text{Let } x, y, a, b \in S \text{ and } \gamma, \beta \in \Gamma \text{ such that } (x\gamma y)\beta a = (x\gamma y)\beta b. \text{ Then } a = b. \text{ So we have} \\
& \quad (x\gamma y)\beta a = (x\gamma y)\beta (a\gamma a) = (x\gamma y)\beta (a\gamma b) \\
& \quad (y\gamma x)\beta a = (y\gamma x)\beta (a\gamma a) = (y\gamma x)\beta (a\gamma b) \\
& \quad \Rightarrow a\beta (y\gamma x) = [a\beta (y\gamma x)]a[a\beta (y\gamma x)] = [b\beta (y\gamma x)]a[b\beta (y\gamma x)] \tag{3.1}
\end{aligned} \]

Similarly, if \((x\gamma y)\beta a = (x\gamma y)\beta b\), then \(a = b \), and so

\[\begin{aligned}
& \quad b\beta (x\gamma y) = (byb)\beta (x\gamma y) = (bya)\beta (x\gamma y) \\
& \quad (x\gamma y)\beta b = (x\gamma y)\beta (byb) = (x\gamma y)\beta (bya) \\
& \quad (y\gamma x)\beta b = (y\gamma x)\beta (byb) = (y\gamma x)\beta (bya) \\
& \quad (a\beta \gamma (y\gamma x) = (byb)\beta (y\gamma x) = b\beta (y\gamma x) \\
& \quad \Rightarrow b\beta (y\gamma x) = [b\beta (y\gamma x)]a[b\beta (y\gamma x)] = [a\beta (y\gamma x)]a[b\beta (y\gamma x)] \tag{3.2}
\end{aligned} \]

From (3.1), and (3.2) we have \(a\beta (y\gamma x) = b\beta (y\gamma x) \).

\[\blacksquare \]

Acknowledgements. The authors are very grateful to the anonymous referee for stimulating comments and improving presentation of the paper.

References

